Stacks Image 166452

BIENES FANTASTISKE ØYNE.

HVORDAN SER BIER OG HVA SER DE?

Det vanskeligste er å forklare kompliserte ting på en enkel måte. I artikkelen nedenfor er det noen få begreper som er kompliserte, ellers er ting forsøkt beskrevet så enkelt som mulig. Bruk tid på å forstå bienes syn så vil du også forstå mer av biene og ikke minst hvordan de kan oppnå slike ekstreme resultater som de gjør. Biene får nemlig ekstremt mye hjelp til jobben, hjelp som du ikke kan se at de får, men kan lære om her. Artikkelen er skrevet for FB-siden "Norsk Hobbybirøkt". Der finner du masse interessant stoff om bier. Klikk på denne lenken og bli medlem https://www.facebook.com/groups/313556729403141/

HVA ER EGENTLIG FARGER?

Vi skal ikke pløye dypt i begrepet lys og farger, men litt må forklares. Lys er den elektromagnetiske energien vi kan se, og lys går i bølger og lysets bølgelengde blir oppgitt i nanometer (nm). Når lyset treffer en gjenstand, kan lysbølgene absorberes eller reflekteres, og reflekteres lyset, oppfattes det som farger. Mennesker ser i lysbølgeområdet 700 til 400 nanometer. Bienes syn er hovedsakelig i 600 til 300 nm-området. Ultrafiolett lys (UV-lys) finnes i området 400 til 300 nm og er utenfor vårt «synsfelt».
Vi ser med andre ord ikke alltid det samme som biene.
UV-lys betyr mye for bier. Forsøk har vist at dersom det ultrafiolette lyset blir fjernet, vil biene miste interessen for å samle nektar og blir i kubene til sult og undergang tvinger de ut. Kanskje oppfatter de dag som natt uten UV-belysning? Ultrafiolett lys som også går tvers igjennom skydekket må være avgjørende for bienes evne til å finne nektar. Bier ser ikke den samme blomstfargen som vi gjør, men det skal vi komme tilbake til.
Se denne videoen: https://www.youtube.com/watch?v=N1TUDFCOwjY

BIENES VIKTIGE JOBB.

Det amerikanske landbruksdepartementet anslår at 80% av all pollinering i USA er utført av bier, og derfor ser forskerne på biene som en helt avgjørende art for landbruket. Uten bier vil økosystemet kollapse. Det vi ser nå, at insekter og bier dør og at kubene forlates tomme, er en ekstrem trussel mot menneskers tilgang til nok mat og opptar forskere over hele verden.
Minst 90 kommersielt dyrkede avlinger er avhengig av pollinering av bier for å gi resultater. Hvor viktig er da bienes pollineringsjobb? Spør en som produserer mandler. Uten bier, ingen mandler! Vekster som epler, blåbær, kirsebær, avokado, agurker, løk, grapefrukt, appelsiner og gresskar ville heller ikke være å få tak i uten bier, og dette er bare en brøkdel av det vi spiser som biene direkte eller indirekte har en snabel bort i. Bier er derfor den viktigste artsgruppe for pollinering i insektsverdenen. Og deres hemmelige våpen, er synet.
Se videoen: https://www.youtube.com/watch?v=Cx6eaVeYXOs

BIENES SPESIELLE SYN.
Bienes syn har lenge fasinert forskningsmiljøene. For hundre år siden beviste forskeren og Nobelprisvinneren Karl von Frisch at bier kan se farge. For at mennesker skal kunne se farger, må pigmentene i overflaten på en gjenstand ta i mot og reflektere lyset slik at øyet vårt kan fange det opp. Øyet oppfatter så den reflekterte delen av lyset som farger. Blomstene bruker sine sterke farger til å tiltrekke seg bier og andre insekter for pollinering, og de sterke fargene leder insektene til nektaren. Det er grunnen til at blomstenes kronblader vanligvis har andre farger enn bladene på plantens stilk.

Selv om mennesker kan se flere farger enn biene, har bier et mye bredere fargesyn. Deres evne til å se ultrafiolett lys gir dem en fordel når de leter etter nektar fordi blomstene er utstyrt med ultrafiolett guiding av biene og hjelper biene på en ekstremt effektiv måte å finne blomstens støvbærere og nektar. Mange ultrafiolette mønstre på blomstene er usynlige for mennesker, men kommer fram ved å bruke spesielle fototeknikker som registrerer blomstenes UV-merking for biene. Masse blomster har denne ultrafiolette guidingen som for oss bare kan ses ved hjelp av spesielt fototeknisk utstyr. Se bilde av bl.a. Løvetann nedenfor der UV-merkingen i blomsten er avslørt.

TRIKOMATISK – TRE FARGERS SYN.

Som oss mennesker er bier trikromatiske - de ser tre primærfarger, det vil si at vi har tre fotoreceptorer/staver i øyet og alle våre fargekombinasjoner er basert på registreringen av tre farger. Mennesker baserer sine fargekombinasjoner på rødt, blått og grønt, mens biene trikomatiske farger er blå, grønn og ultrafiolett lys. Rødt som vi ser, har ikke biene en fargereseptor for, og de kan derfor ikke se denne fargen som annet enn svart. Men likevel kan de se rødlige bølgelengder, som f.eks. gul og orange. De kan også se blågrønn, blå, lilla og "bi-lilla" som er en kombinasjon av gul og ultrafiolett lys, i et bølgeområde som mennesker ikke kan se. Forskerne mener at de mest tiltrekkende fargene for bier sansynligvis er lilla, fiolette og blå. Blå er spesielt interessant fordi fotograferes blomster med kamera som kan gi ultrafiolette bilder, finner vi at blomster som ser f.eks. gule ut, er UV-blåmerket for bienes skyld.

HURTIG FARGEOPPFATTELSE

Bienes reaksjonsevne på farger er ulikt vårt fargesyn på flere måter. De kan oppfatte farger mye raskere enn oss. Bier har den raskeste fargeoppfattelsen innenfor dyreverdenen, hele 5 ganger raskere enn menneskers. Denne evnen til ekstremt rask oppfattelse av blomstenes signalfarger har de god bruk for – ikke minst når de flyr for da går jo alt forbi dem så fort. Så mens vi kanskje har problemer med å skille en blomst i en gruppe fra en annen, gjør ikke bier det. De ser hver enkelt blomst tydelig i fart og treffer eksakt når de lander.
Om vi kjører på en motorvei med blomster i veikanten i kort avstand fra bilen, kan vi ikke skille blomstene fra hverandre. Bilen beveger seg så fort at fargene blir et flimrende kaos av farger for øyet. For biene flimrer ikke fargene når de flyr fort, og blomstene framstår tydelige. Derfor regner man med at biene ser ting som beveger seg tydeligere enn ting som står i ro, og at bier kan pollinere blomster som er i bevegelse eller unngå å bli truffet om vi forsøker å slå etter dem fordi oppfattelsen via øynene er så mye raskere enn vår.
Biene ser best mens de flyr, og ved at de har dybdesyn og ser tredimensjonalt, kan de også bedømme avstander med stor nøyaktighet. Det de har sett, kan de formidle i kuben med dans til andre trekkbier slikt som retning og avstand til gode trekkområder.

FARGEFORANDRING – IRIDESCENCE.

Noen blomster har kronblader som skifter farge avhengig av hvilken vinkel man ser på de fra. Dette kalles iridescence og kan også sees på sommerfuglvinger alt etter hvordan lyset kommer inn på vingene. Iridiscence er ofte i UV-området som gjør at vi ikke kan oppfatte det. Men det kan biene. De ser de skinnende kronbladene og forbinder dem med nektar. Slik blir attraktive farger viktig for pollineringen.

BIENE HAR 5 ØYNE – VISSTE DU DET?


Bier har fem separate øyne og to forskjellige typer øyner med vidt forskjellige funksjoner. Biene har 3 små øyne forran på toppen av hodet som kalles ocelli og 2 fasettøyne til sammen fem. Ordet ocelli kommer fra det latinske ordet "ocellus" som betyr lite øye. Disse små øynene har bare ei linse hver og hjelper bia i å fly stabilt og navigere riktig. De gjør det mulig for biene å bedømme lysintensiteten og orientere riktig. Ved hjelp av disse spesielle øynene, kan biene se ultraviolett lys som hjelper med å oppdage blomster med UV-markører.

FASETTØYNENE.

Bier har to store sammensatte fasettøyne (compound eyes), et på hver side av hodet. Disse fasettøynene er fantastiske eksempler på naturens ingeniørkunst. Øynene består av tusenvis av små linser, fasetter, som sitter ytterst på toppen av rør som går innover i øyet. Hver av disse fasettene dekker en liten del av insektets synsfelt. Når synsinntrykkene kommer fra fasettene, danner bienes hjerne et mosaikklignende bilde med sekskantmønster basert på hva hver fasett ser. Arbeiderbier har 6 900 fasetter i hvert øye, og droner har 8 600 fasetter. Ikke merkelig at bier ser godt.
Bier er i stand til å se farger fordi hver av disse fasettrørene inneholder 8 celler som reagerer på lys. Fire av cellene er mottakere av gul-grønt lys, tre er mottakere av blått lys og en celler er mottaker av ultrafiolett lys.

BIENE SER POLARISERT LYS.

Men bienes supersyn greier mer enn å se farger. Biene kan også se polarisert lys. Om man slår på taklyset i stua, skinner lyset i alle retninger, men noe av lyset går også som rette stråler i en retning. De rette strålene kaller vi polarisert lys, og disse rette lysstrålene ser biene, men vi ser de ikke. Utendørs kommer det polariserte lyset inn fra atmosfæren, og bienes øye kan analysere dette polarisasjonsmønsteret i lufta over dem. Mønsteret blir til et kart eller til bienes GPS, om du vil - et mønster som biene navigerer etter både ut fra kuben og hjem igjen.

UV-LYS VIKTIG.

Sollyset har også masse ultrafiolett lys i seg. For bienes evne til å samle nektar er det helt avgjørende at de ser UV-strålingen som også trenger gjennom skydekket.

Evnen til å oppfatte UV-merking på blomstene, forklarer f.eks. hvordan de kan finne fram til de rette blomstene i et område med bare hvite blomster. Biene ser nemlig ikke bare hvite blomster, men blomster med tydelig UV markører og søker mot disse UV-flekkene så raskt de kan. Selv om blomsten ikke har pene farger slik vi ser de, betyr det ikke at biene synes det samme. Nylige studier viser nemlig at ugress har stor formeringssuksess fordi insektene synes plantene er svære attraktive.

KAN ØKOSYSTEMET EKSISTERE UTEN BIENE?

Pollinering er viktig for alt voksende plantemateriale på kloden og betyr svært mye for verdensøkonomien. Bidraget til verdensøkonomiene er svimlende. I USA er avlingene som biene har bidratt til anslått til en verdi av 14,6 milliarder dollar. Og USA er jo bare en liten del av verden, så betydningen av bienes jobb er ikke til å kalkulere. Med sitt utrolige syn kan biene pollinere planter med stor nøyaktighet. Overskyet himmel er ingen stor utfordring for deres syn. Det kan se hva vi ikke kan se, og på grunn av disse evnene og den jobben de gjør, er biene klodens viktigste pollinatorer og avgjørende for at økosystemet skal kunne fungere.
Leste du hele denne artikkelen? Merk den med «Liker». Slik kan vi se hvor mange som er villige til å lese lange artikler på FB og ikke bare de korte og mer overfladiske. Kanskje det ikke er bryet verd å bruke så mye tid på en slik artikkel? Kommenter gjerne.
Kilder:
https://www.beeculture.com/bees-see-matters/
https://www.vitensenteret.com/nb/mod377
https://www.shutterstock.com/
https://no.wikipedia.org/wiki/Fargesyn
https://no.wikipedia.org/wiki/Fargesyn

https://www.youtube.com/watch?v=N1TUDFCOwjY

KAN BIER KOMMUNISERE MED LYDER? INTERESSANT FORSKNING VISER AT DE KAN!

Først litt om lyd.

Lyd som vi kan sanse ved hjelp av hørselen, er trykkvariasjoner (bølger) i luften som sprer seg i luftmolekylene. Lyd er energi som må ha et materiale (luft, metall, vann etc.) å spre seg i. Ta en stein og kast den i et stille vann og se hva som skjer: Energien i steinkastet som stammer fra armen din, treffer vannflata og det blir et plask! Energien skaper en ringbølge rundt steinen som sprer seg som ringer/bølger i vannet og beveger seg utover fra der steinen landet til bølgevirkningen forsvinner. Lyd-energi kan forklares på samme måte: Energi i form av molekylsvingninger skapes og forplanter seg i lufta som bølger i vannet og når vårt øre. Signalene går til hjernen og blir tolket. Lydbølger måles i Herz, som er antall lydsvingninger pr. sekund. Øret vårt kan oppfatte fra 20 til 20.000 svingninger pr. sekund. Over og under dette frekvensområde, kan vi mennesker ikke oppfatte lyd. Lyd må ha et materiale å spre seg i, og jo kortere avstand det er mellom molekylene i materiale, jo raskere går lydbølgene.

  • Luft: 340 meter/sekund
  • Vann: 1400 meter/sekund
  • Treverk: 3500 meter/sekund
  • Stål: 5000 meter/sekund

BIER OG BRUK AV LYD.

Lyd kan sendes gjennom luft som bølger eller som vibrasjoner eller svingninger i faste stoffer, og samlet kalles dette for vibrasjonsakustikk. Vibrasjonsakustikk spiller en viktig rolle i kommunikasjonen mellom biene i en bikube. I lang tid trodde man at biene var døve for lyd (Goodman 2003), men det har vist seg at bier kan registrere lyd og tolke signalene (Towne and Kirchner 1989). Man har greid å kartlegge bienes registrering av luftbåren lyd og hittil funnet at de oppfatter lyd i frekvensområdet 10 til 500 Herz. Bier lager lyd med frekvens godt under 10 Herz og over 1000 Herz (McNeil 2015), men hvor mye av dette de oppfatter, er man usikre på. De har et organ inne i antennene som heter Johnston organet. Dette organet er et sanseorgan som fanger opp lydbølger og omgjør signalene til nerveimpulser som sendes til hjernen.

Bier lager ikke lyd bare ved å slå med vingene, men også ved å bruke selve vingemusklene. Vingemusklene blir naturligvis brukt ved flyvning, men de kan frikobles fra vingene i framkroppen for produksjon av varme å lage lyder med, og det gjør de. Dette gir gode muligheter for lydsignaler.

Det viser seg nemlig at bidansen på tavlene ikke bare er bevegelse i 8-tallsmønster med informasjon om solvinkler og distanser, men ren kommunikasjon med lydbølger og vibrasjoner.

I 1989 undersøkte Towne and Kirchner bienes oppfattelse av lyd. De brukte en kombinasjon av lyd og svake elektriske støt. Biene lærte å unngå strømstøt ved å forlate underlaget når et lydsignal ble gitt, for etter signalet ble underlaget gjort elektrisk. Konklusjonen ble da at biene kunne høre luftbåren lyd.

Et nytt forsøk (Kirchner et al. 1991) trente biene til å svinge til høyre eller til venstre når de kom inn i en fôrautomat. Hvilken vei de skulle svinge for å få mat, ble styrt av lyd. Metoden ble brukt for å finne ut hvilket frekvensområde biene kunne høre. Forsøkene viste at bier hører luftbåren lyd opptil 500 Herz med følsomhet nok til å oppfatte lydene fra ei dansebie (Kirchner 1993). Samme treningsteknikk ble brukt til å finne ut hvilke sensoriske strukturer som biene oppfanger lydsignalene med (hår, antenner, kroppsdeler osv) (Dreller and Kirchner 1993a). Sensoriske strukturer for å fange opp lyd på kort avstand, trodde man var hår på bikroppen og antennene. Bier som hadde lært seg å reagere på lyd ble deretter manipulert ved at man fjernet en eller begge antennene eller dekket til et visst ledd i antenna eller fjernet visse hår på kroppen(Kirchner 1993). Disse forsøkene viste at biene mottar lydsignaler med et organ, Johnston-organet (Dreller and Kirchner 1993a), som ligger inni antennene.

JOHNSTON-ORGANET, BIENES ALTERNATIV TIL VÅRT MELLOMØRE? Johnston-organet inni antenna, (fig. 1a) er en samling sensorceller som er følsomme for vibrasjoner. Johnston-organet er plassert i leddområdet i antennas andre del, Pedicel, (se bildet) og registrer vibrasjoner iytterste antennedel (flagellum)(Towne 1994). Ytterste antennedel kan registrere bevegelser ned til 20nm ( 20 milliardedels meter) og er følsom for lavfrekvens lyd i området 265-350 Herz. Organet har 300 nerveceller som omformer mekanisk vibrasjon til nerveimpulser som sendes videre for tolkning i hjernen. (McNeil 2015). Johnston-organet og antennene er svært viktige under flyvningen.

«DANSEBIELYD» Lydfeltet som dannes nær dansende bier ble undersøkt med to mikrofoner plassert i forskjellige vinkler i forhold til den dansende bia (Michelsen et al. 1987). Forsøkene viste at lydene under dansingen er produsert av vingene som fungerer som to speilvendte lydgivere. I nærheten av bakkroppen (abdomen) er lydbølgene i luftrommene over og under vingeplanet helt ute av fase. Langs vingekantene, fant forskerne et sterkt felt med et fenomen man kaller akustisk kortslutning, et roterende lydfenomen der lyden vil gå rundt vingen tilbake til der den ble dannet. Et område med svært intens akustisk kortslutning er påvist tett på kanten på vingene der en trykkgradienten på ca 1Pa/mm (trykkforandring pr. distanseenhet) ble observert i 90 graders vinkel til vingeflatene. Trykkgradienten driver en luftstrøm med styrke ca 1m/sek.

Se denne videoen om selve orienteringsdansen: https://www.youtube.com/watch?v=1MX2WN-7Xzc

TOLKNING AV DANSEBUDSKAPET. Biene som tolker dansebevegelsene, sier oss mye om egenskapene på det akustiske lydfeltet rundt danseren: Følgerbier plasserer nemlig sine antenner i sonen med maksimal akustisk kortslutning der luftpartikkelbevegelsene er mest intense. Disse observasjonene kan bety 1) at følgerbier forsøker å unngå å blande budskapene som kommer med lydbølger fra andre dansebier i nærheten og 2) sier noe om hvordan følgebiene kan innhente navigasjonsinformasjon fra det akustiske feltet som danseren skaper nærmest bikroppen.

En rekke fenomener ble oppdaget på et så komplisert lydteknisk nivå at vi ikke skal komme inn på det her. Informasjonen finnes i referansene nederst.

Lite lyd ble registrert rundt danserens hode, og danserens vaggebevegelse skapte i seg selv 12-13 Herz målt med en stasjonær måler, og denne vaggelyden i seg selv er en del av hele dansebudskapet.

Som vi har sett bruker trekkbiene en vaggende dans for å informere andre trekkbier om retningen og avstanden til steder med nektar eller pollen. Lyd og strømmer av luft som dannes av danserens vinger i tillegg til vibrasjoner dannet av musklene inne i framkroppen (Thorax), er tydelige tegn som bidrar til at budskapet blir oppfattet og forstått. Hvordan biene tolker budskapet og omdanner det til handling i form av søk i terrenget, er det manglende forståelse av.

LYD OG VIBRASJONER TOLKES I HJERNEN. For å forstå hvilke nerveoverføringer som er inne i bildet ved bienes dansekommunikasjon, ble anatomien i antennene og selve Johnston-organet analysert (Tsujiuchi et al. 2007). Man så på de delene av antenna som fungerer som mottakere av signaler og deres evne til å omdanne de til nervesignaler for transport til hjernen. Bienes Johnston-organ består av 300-320 scolopia, som er sammensatte nerveceller med forbindelse til ca 48 hud-dekte «knapper» plassert rundt hele overflaten av antenneleddet Pedicel (se bildet). Hver av de 48 scolopia inneholder følsomme nerveceller. Den ytterste delen av antenna, flagellum, som biene bruker i direkte kontakt på dansebias kropp og i det nærmeste feltet rundt den, er spesielt følsom for lavfrekvens lyd og har forbindelse med Johnston-organet. Lyd i området 265-350 Herz, oppfattes ikke av flagellum. Likevel mener forskerne at biene som følger dansebia kan oppfatte både de lavfrekvense lydene på 12-15 Herz og de korte vibrerende pulsene dansebia lager med vingene der det dannes både luftstrømmer og lyd med høyere frekvens. Vingene lager en luftstrøm med styrke 1m/sek i pulser med varighet 20 millisekunder og med frekvens 200 til 300 Herz. Impulsene som fanges opp av Johnston-organet, sendes videre til hjernen for tolkning.

VIBRASJONER EN DEL AV SPRÅKET. Arbeiderbiene kommuniserer også ved hjelp av vibrasjoner i underlaget som vanligvis er voksbygg. Disse vibrasjonene oppfattes av vibrasjonsfølsomme organer i beina (fig.1B i tegningen over). Prøv å legge øret inntil kuben og knips i kubeveggen. Du lager en vibrasjon i kubens materiale som oppfanges av bienes føtter. Så hører du reaksjonen, er biene i live – de bruser. Vibrasjonene blir tolket og omdannet til nerveimpulser og overført til nervesystemet (Hunt og Richard 2013).

Når dansebia signaliserer både ved hjelp av vingene, vaggende kroppsbevegelser og kraftige muskelbevegelser i framkroppen (thorax), overføres sterke vibrasjoner fra framkroppen via beina og ned i vokstavlene. Disse vibrasjonene er sterkest når vrir framkroppen kraftig sideveis i en bue i forhold til bakkroppen (Hunt og Richard 2013). Det er påvist både loddrette og vannrette vibrasjoner i vokstavlene alt etter beinstillingen på de dansende biene (Sandeman et al., 1996, Rohrseitz og Kilpinen 1997).

Dansende bier er vanligst på vokstavler med helt utbygde celler, i forhold til avkortede eller ikke utbygde celler. Dans på utbygde tavler med åpne celler tiltrekker seg raskt trekkbier som er arbeidsløse, noe som kan tyde på at strukturen og tettheten i tavlebygget har sammenheng med signaloverføringen (Tautz 1996). Selv om vibrasjoner i vokstavlene under dansen overfører informasjon fra danseren til biene som observerer, kan ikke vibrasjonene i vokstavla gi nøyaktig informasjon om hvordan danseren beveger seg, slik som vinkler, retning eller hastighet (Nieh og Tautz 2000) og blir derfor bare et supplement til selve dansen.

Av andre dyr som kan kommunisere ved hjelp av lavfrekvent lyd i området 15 til 35Hz, er elefanten et godt eksempel. Den sender lydbølger ned i bakken i alle retninger som andre elefanter fanger opp flere kilometer unna.

ET SAMMENSATT DANSESPRÅK. Dansespråket biene bruker består da av både selve 8-tall dansen med sine karakteristiske vaggebevegelser, lavfrekvent lyd fra 12 til 15 Herz, hurtige og korte vingebevegelser som varer noen millisekunder, luftstrømmer med fart 1 meter pr. sekund, vibrasjoner i selve bikroppen, lydbølger i frekvensområdet 200 til 350 Herz og sterke vibrasjoner som overføres til vokstavlene ved hjelp av beina. Alt dette skjer på en gang. Ikke rart at biene samler seg rundt den som har noe å fortelle.

Se denne videoen og hør lydsignalene som bia avgir mens den overlater lasten av nektar til ei husbie. Selv ved lossing, kan den signalisere avstander uten å danse.

DRONNINGENE SIGNALISERER MED LYD. De mest kjente lydene for birøktere bortsett fra bier i flukt, er kanskje tutingen og kvekkingen som dronningene lager i forbindelse med sverming. Disse signalene er også sterke vibrasjonssignaler i vokstavlene i tillegg til de lydene som kan høres flere meter fra kuben. Arbeiderbiene har også et stopp-signal som er kjent (Nieh 1993). Alle disse signalene ligger i frekvensområdet 200-500Herz (Michelsen et al. 1986ab).

Video: Krøpet dronning tuter til innesperrede dronninger. Se på slutten hvordan arbeiderne signaliserer med vibrasjoner gjennom veggen inn til ei innesperret dronning:

Video: Hør arbeiderbier signalisere til hverandre:

KOMMENTAR: Internasjonale forskningsrapporter om bier oversatt til norsk, er det lite av. Kanskje kommer det av at mye at det som det forskes på er krevende stoff for oversetteren som vanligvis ikke er inne i faget.

Stykket ovenfor er hentet fra forskjellig stoff og egne kommentarer. Noe av stoffet har vært så komplisert å oversette (masse vitenskapelige faguttrykk bl.a. innen lydteknikk, biers anatomi og oppbygging av nerveceller) at forenklinger har vært nødvendig. Håper likevel artikkelen kan vise hvor fantastiske biene er. Selv om vi skriver 2018 og bier er den art på jorda det er forsket mest på bortsett fra menneske, så har vi fortsatt mye igjen før vi har full oversikt over dette insektet. Kanskje får vi aldri full oversikt, og det er trolig det beste.

Artikkelen er sakset fra Facebooksiden Norsk Hobbybirøkt . Gå inn og bli medlem!

Kilder:

https://snl.no/lyd

https://www.beeculture.com/a-closer-look-sound-generation-and-hearing/

https://en.wikipedia.org/wiki/Seismic_communicatio...

Vis flere poster...

Stacks Image 166226
Stacks Image 166229
Stacks Image 166264
Stacks Image 166267
Stacks Image 166319
Stacks Image 166322

Utviklet av sirBull.com

Alle rettigheter reservert © NorskBirøkt.no

Stacks Image 187995

BIENES FANTASTISKE ØYNE.

HVORDAN SER BIER OG HVA SER DE?

Det vanskeligste er å forklare kompliserte ting på en enkel måte. I artikkelen nedenfor er det noen få begreper som er kompliserte, ellers er ting forsøkt beskrevet så enkelt som mulig. Bruk tid på å forstå bienes syn så vil du også forstå mer av biene og ikke minst hvordan de kan oppnå slike ekstreme resultater som de gjør. Biene får nemlig ekstremt mye hjelp til jobben, hjelp som du ikke kan se at de får, men kan lære om her. Artikkelen er skrevet for FB-siden "Norsk Hobbybirøkt". Der finner du masse interessant stoff om bier. Klikk på denne lenken og bli medlem https://www.facebook.com/groups/313556729403141/

HVA ER EGENTLIG FARGER?

Vi skal ikke pløye dypt i begrepet lys og farger, men litt må forklares. Lys er den elektromagnetiske energien vi kan se, og lys går i bølger og lysets bølgelengde blir oppgitt i nanometer (nm). Når lyset treffer en gjenstand, kan lysbølgene absorberes eller reflekteres, og reflekteres lyset, oppfattes det som farger. Mennesker ser i lysbølgeområdet 700 til 400 nanometer. Bienes syn er hovedsakelig i 600 til 300 nm-området. Ultrafiolett lys (UV-lys) finnes i området 400 til 300 nm og er utenfor vårt «synsfelt».
Vi ser med andre ord ikke alltid det samme som biene.
UV-lys betyr mye for bier. Forsøk har vist at dersom det ultrafiolette lyset blir fjernet, vil biene miste interessen for å samle nektar og blir i kubene til sult og undergang tvinger de ut. Kanskje oppfatter de dag som natt uten UV-belysning? Ultrafiolett lys som også går tvers igjennom skydekket må være avgjørende for bienes evne til å finne nektar. Bier ser ikke den samme blomstfargen som vi gjør, men det skal vi komme tilbake til.
Se denne videoen: https://www.youtube.com/watch?v=N1TUDFCOwjY

BIENES VIKTIGE JOBB.

Det amerikanske landbruksdepartementet anslår at 80% av all pollinering i USA er utført av bier, og derfor ser forskerne på biene som en helt avgjørende art for landbruket. Uten bier vil økosystemet kollapse. Det vi ser nå, at insekter og bier dør og at kubene forlates tomme, er en ekstrem trussel mot menneskers tilgang til nok mat og opptar forskere over hele verden.
Minst 90 kommersielt dyrkede avlinger er avhengig av pollinering av bier for å gi resultater. Hvor viktig er da bienes pollineringsjobb? Spør en som produserer mandler. Uten bier, ingen mandler! Vekster som epler, blåbær, kirsebær, avokado, agurker, løk, grapefrukt, appelsiner og gresskar ville heller ikke være å få tak i uten bier, og dette er bare en brøkdel av det vi spiser som biene direkte eller indirekte har en snabel bort i. Bier er derfor den viktigste artsgruppe for pollinering i insektsverdenen. Og deres hemmelige våpen, er synet.
Se videoen: https://www.youtube.com/watch?v=Cx6eaVeYXOs

BIENES SPESIELLE SYN.
Bienes syn har lenge fasinert forskningsmiljøene. For hundre år siden beviste forskeren og Nobelprisvinneren Karl von Frisch at bier kan se farge. For at mennesker skal kunne se farger, må pigmentene i overflaten på en gjenstand ta i mot og reflektere lyset slik at øyet vårt kan fange det opp. Øyet oppfatter så den reflekterte delen av lyset som farger. Blomstene bruker sine sterke farger til å tiltrekke seg bier og andre insekter for pollinering, og de sterke fargene leder insektene til nektaren. Det er grunnen til at blomstenes kronblader vanligvis har andre farger enn bladene på plantens stilk.

Selv om mennesker kan se flere farger enn biene, har bier et mye bredere fargesyn. Deres evne til å se ultrafiolett lys gir dem en fordel når de leter etter nektar fordi blomstene er utstyrt med ultrafiolett guiding av biene og hjelper biene på en ekstremt effektiv måte å finne blomstens støvbærere og nektar. Mange ultrafiolette mønstre på blomstene er usynlige for mennesker, men kommer fram ved å bruke spesielle fototeknikker som registrerer blomstenes UV-merking for biene. Masse blomster har denne ultrafiolette guidingen som for oss bare kan ses ved hjelp av spesielt fototeknisk utstyr. Se bilde av bl.a. Løvetann nedenfor der UV-merkingen i blomsten er avslørt.

TRIKOMATISK – TRE FARGERS SYN.

Som oss mennesker er bier trikromatiske - de ser tre primærfarger, det vil si at vi har tre fotoreceptorer/staver i øyet og alle våre fargekombinasjoner er basert på registreringen av tre farger. Mennesker baserer sine fargekombinasjoner på rødt, blått og grønt, mens biene trikomatiske farger er blå, grønn og ultrafiolett lys. Rødt som vi ser, har ikke biene en fargereseptor for, og de kan derfor ikke se denne fargen som annet enn svart. Men likevel kan de se rødlige bølgelengder, som f.eks. gul og orange. De kan også se blågrønn, blå, lilla og "bi-lilla" som er en kombinasjon av gul og ultrafiolett lys, i et bølgeområde som mennesker ikke kan se. Forskerne mener at de mest tiltrekkende fargene for bier sansynligvis er lilla, fiolette og blå. Blå er spesielt interessant fordi fotograferes blomster med kamera som kan gi ultrafiolette bilder, finner vi at blomster som ser f.eks. gule ut, er UV-blåmerket for bienes skyld.

HURTIG FARGEOPPFATTELSE

Bienes reaksjonsevne på farger er ulikt vårt fargesyn på flere måter. De kan oppfatte farger mye raskere enn oss. Bier har den raskeste fargeoppfattelsen innenfor dyreverdenen, hele 5 ganger raskere enn menneskers. Denne evnen til ekstremt rask oppfattelse av blomstenes signalfarger har de god bruk for – ikke minst når de flyr for da går jo alt forbi dem så fort. Så mens vi kanskje har problemer med å skille en blomst i en gruppe fra en annen, gjør ikke bier det. De ser hver enkelt blomst tydelig i fart og treffer eksakt når de lander.
Om vi kjører på en motorvei med blomster i veikanten i kort avstand fra bilen, kan vi ikke skille blomstene fra hverandre. Bilen beveger seg så fort at fargene blir et flimrende kaos av farger for øyet. For biene flimrer ikke fargene når de flyr fort, og blomstene framstår tydelige. Derfor regner man med at biene ser ting som beveger seg tydeligere enn ting som står i ro, og at bier kan pollinere blomster som er i bevegelse eller unngå å bli truffet om vi forsøker å slå etter dem fordi oppfattelsen via øynene er så mye raskere enn vår.
Biene ser best mens de flyr, og ved at de har dybdesyn og ser tredimensjonalt, kan de også bedømme avstander med stor nøyaktighet. Det de har sett, kan de formidle i kuben med dans til andre trekkbier slikt som retning og avstand til gode trekkområder.

FARGEFORANDRING – IRIDESCENCE.

Noen blomster har kronblader som skifter farge avhengig av hvilken vinkel man ser på de fra. Dette kalles iridescence og kan også sees på sommerfuglvinger alt etter hvordan lyset kommer inn på vingene. Iridiscence er ofte i UV-området som gjør at vi ikke kan oppfatte det. Men det kan biene. De ser de skinnende kronbladene og forbinder dem med nektar. Slik blir attraktive farger viktig for pollineringen.

BIENE HAR 5 ØYNE – VISSTE DU DET?


Bier har fem separate øyne og to forskjellige typer øyner med vidt forskjellige funksjoner. Biene har 3 små øyne forran på toppen av hodet som kalles ocelli og 2 fasettøyne til sammen fem. Ordet ocelli kommer fra det latinske ordet "ocellus" som betyr lite øye. Disse små øynene har bare ei linse hver og hjelper bia i å fly stabilt og navigere riktig. De gjør det mulig for biene å bedømme lysintensiteten og orientere riktig. Ved hjelp av disse spesielle øynene, kan biene se ultraviolett lys som hjelper med å oppdage blomster med UV-markører.

FASETTØYNENE.

Bier har to store sammensatte fasettøyne (compound eyes), et på hver side av hodet. Disse fasettøynene er fantastiske eksempler på naturens ingeniørkunst. Øynene består av tusenvis av små linser, fasetter, som sitter ytterst på toppen av rør som går innover i øyet. Hver av disse fasettene dekker en liten del av insektets synsfelt. Når synsinntrykkene kommer fra fasettene, danner bienes hjerne et mosaikklignende bilde med sekskantmønster basert på hva hver fasett ser. Arbeiderbier har 6 900 fasetter i hvert øye, og droner har 8 600 fasetter. Ikke merkelig at bier ser godt.
Bier er i stand til å se farger fordi hver av disse fasettrørene inneholder 8 celler som reagerer på lys. Fire av cellene er mottakere av gul-grønt lys, tre er mottakere av blått lys og en celler er mottaker av ultrafiolett lys.

BIENE SER POLARISERT LYS.

Men bienes supersyn greier mer enn å se farger. Biene kan også se polarisert lys. Om man slår på taklyset i stua, skinner lyset i alle retninger, men noe av lyset går også som rette stråler i en retning. De rette strålene kaller vi polarisert lys, og disse rette lysstrålene ser biene, men vi ser de ikke. Utendørs kommer det polariserte lyset inn fra atmosfæren, og bienes øye kan analysere dette polarisasjonsmønsteret i lufta over dem. Mønsteret blir til et kart eller til bienes GPS, om du vil - et mønster som biene navigerer etter både ut fra kuben og hjem igjen.

UV-LYS VIKTIG.

Sollyset har også masse ultrafiolett lys i seg. For bienes evne til å samle nektar er det helt avgjørende at de ser UV-strålingen som også trenger gjennom skydekket.

Evnen til å oppfatte UV-merking på blomstene, forklarer f.eks. hvordan de kan finne fram til de rette blomstene i et område med bare hvite blomster. Biene ser nemlig ikke bare hvite blomster, men blomster med tydelig UV markører og søker mot disse UV-flekkene så raskt de kan. Selv om blomsten ikke har pene farger slik vi ser de, betyr det ikke at biene synes det samme. Nylige studier viser nemlig at ugress har stor formeringssuksess fordi insektene synes plantene er svære attraktive.

KAN ØKOSYSTEMET EKSISTERE UTEN BIENE?

Pollinering er viktig for alt voksende plantemateriale på kloden og betyr svært mye for verdensøkonomien. Bidraget til verdensøkonomiene er svimlende. I USA er avlingene som biene har bidratt til anslått til en verdi av 14,6 milliarder dollar. Og USA er jo bare en liten del av verden, så betydningen av bienes jobb er ikke til å kalkulere. Med sitt utrolige syn kan biene pollinere planter med stor nøyaktighet. Overskyet himmel er ingen stor utfordring for deres syn. Det kan se hva vi ikke kan se, og på grunn av disse evnene og den jobben de gjør, er biene klodens viktigste pollinatorer og avgjørende for at økosystemet skal kunne fungere.
Leste du hele denne artikkelen? Merk den med «Liker». Slik kan vi se hvor mange som er villige til å lese lange artikler på FB og ikke bare de korte og mer overfladiske. Kanskje det ikke er bryet verd å bruke så mye tid på en slik artikkel? Kommenter gjerne.
Kilder:
https://www.beeculture.com/bees-see-matters/
https://www.vitensenteret.com/nb/mod377
https://www.shutterstock.com/
https://no.wikipedia.org/wiki/Fargesyn
https://no.wikipedia.org/wiki/Fargesyn

https://www.youtube.com/watch?v=N1TUDFCOwjY

KAN BIER KOMMUNISERE MED LYDER? INTERESSANT FORSKNING VISER AT DE KAN!

Først litt om lyd.

Lyd som vi kan sanse ved hjelp av hørselen, er trykkvariasjoner (bølger) i luften som sprer seg i luftmolekylene. Lyd er energi som må ha et materiale (luft, metall, vann etc.) å spre seg i. Ta en stein og kast den i et stille vann og se hva som skjer: Energien i steinkastet som stammer fra armen din, treffer vannflata og det blir et plask! Energien skaper en ringbølge rundt steinen som sprer seg som ringer/bølger i vannet og beveger seg utover fra der steinen landet til bølgevirkningen forsvinner. Lyd-energi kan forklares på samme måte: Energi i form av molekylsvingninger skapes og forplanter seg i lufta som bølger i vannet og når vårt øre. Signalene går til hjernen og blir tolket. Lydbølger måles i Herz, som er antall lydsvingninger pr. sekund. Øret vårt kan oppfatte fra 20 til 20.000 svingninger pr. sekund. Over og under dette frekvensområde, kan vi mennesker ikke oppfatte lyd. Lyd må ha et materiale å spre seg i, og jo kortere avstand det er mellom molekylene i materiale, jo raskere går lydbølgene.

  • Luft: 340 meter/sekund
  • Vann: 1400 meter/sekund
  • Treverk: 3500 meter/sekund
  • Stål: 5000 meter/sekund

BIER OG BRUK AV LYD.

Lyd kan sendes gjennom luft som bølger eller som vibrasjoner eller svingninger i faste stoffer, og samlet kalles dette for vibrasjonsakustikk. Vibrasjonsakustikk spiller en viktig rolle i kommunikasjonen mellom biene i en bikube. I lang tid trodde man at biene var døve for lyd (Goodman 2003), men det har vist seg at bier kan registrere lyd og tolke signalene (Towne and Kirchner 1989). Man har greid å kartlegge bienes registrering av luftbåren lyd og hittil funnet at de oppfatter lyd i frekvensområdet 10 til 500 Herz. Bier lager lyd med frekvens godt under 10 Herz og over 1000 Herz (McNeil 2015), men hvor mye av dette de oppfatter, er man usikre på. De har et organ inne i antennene som heter Johnston organet. Dette organet er et sanseorgan som fanger opp lydbølger og omgjør signalene til nerveimpulser som sendes til hjernen.

Bier lager ikke lyd bare ved å slå med vingene, men også ved å bruke selve vingemusklene. Vingemusklene blir naturligvis brukt ved flyvning, men de kan frikobles fra vingene i framkroppen for produksjon av varme å lage lyder med, og det gjør de. Dette gir gode muligheter for lydsignaler.

Det viser seg nemlig at bidansen på tavlene ikke bare er bevegelse i 8-tallsmønster med informasjon om solvinkler og distanser, men ren kommunikasjon med lydbølger og vibrasjoner.

I 1989 undersøkte Towne and Kirchner bienes oppfattelse av lyd. De brukte en kombinasjon av lyd og svake elektriske støt. Biene lærte å unngå strømstøt ved å forlate underlaget når et lydsignal ble gitt, for etter signalet ble underlaget gjort elektrisk. Konklusjonen ble da at biene kunne høre luftbåren lyd.

Et nytt forsøk (Kirchner et al. 1991) trente biene til å svinge til høyre eller til venstre når de kom inn i en fôrautomat. Hvilken vei de skulle svinge for å få mat, ble styrt av lyd. Metoden ble brukt for å finne ut hvilket frekvensområde biene kunne høre. Forsøkene viste at bier hører luftbåren lyd opptil 500 Herz med følsomhet nok til å oppfatte lydene fra ei dansebie (Kirchner 1993). Samme treningsteknikk ble brukt til å finne ut hvilke sensoriske strukturer som biene oppfanger lydsignalene med (hår, antenner, kroppsdeler osv) (Dreller and Kirchner 1993a). Sensoriske strukturer for å fange opp lyd på kort avstand, trodde man var hår på bikroppen og antennene. Bier som hadde lært seg å reagere på lyd ble deretter manipulert ved at man fjernet en eller begge antennene eller dekket til et visst ledd i antenna eller fjernet visse hår på kroppen(Kirchner 1993). Disse forsøkene viste at biene mottar lydsignaler med et organ, Johnston-organet (Dreller and Kirchner 1993a), som ligger inni antennene.

JOHNSTON-ORGANET, BIENES ALTERNATIV TIL VÅRT MELLOMØRE? Johnston-organet inni antenna, (fig. 1a) er en samling sensorceller som er følsomme for vibrasjoner. Johnston-organet er plassert i leddområdet i antennas andre del, Pedicel, (se bildet) og registrer vibrasjoner iytterste antennedel (flagellum)(Towne 1994). Ytterste antennedel kan registrere bevegelser ned til 20nm ( 20 milliardedels meter) og er følsom for lavfrekvens lyd i området 265-350 Herz. Organet har 300 nerveceller som omformer mekanisk vibrasjon til nerveimpulser som sendes videre for tolkning i hjernen. (McNeil 2015). Johnston-organet og antennene er svært viktige under flyvningen.

«DANSEBIELYD» Lydfeltet som dannes nær dansende bier ble undersøkt med to mikrofoner plassert i forskjellige vinkler i forhold til den dansende bia (Michelsen et al. 1987). Forsøkene viste at lydene under dansingen er produsert av vingene som fungerer som to speilvendte lydgivere. I nærheten av bakkroppen (abdomen) er lydbølgene i luftrommene over og under vingeplanet helt ute av fase. Langs vingekantene, fant forskerne et sterkt felt med et fenomen man kaller akustisk kortslutning, et roterende lydfenomen der lyden vil gå rundt vingen tilbake til der den ble dannet. Et område med svært intens akustisk kortslutning er påvist tett på kanten på vingene der en trykkgradienten på ca 1Pa/mm (trykkforandring pr. distanseenhet) ble observert i 90 graders vinkel til vingeflatene. Trykkgradienten driver en luftstrøm med styrke ca 1m/sek.

Se denne videoen om selve orienteringsdansen: https://www.youtube.com/watch?v=1MX2WN-7Xzc

TOLKNING AV DANSEBUDSKAPET. Biene som tolker dansebevegelsene, sier oss mye om egenskapene på det akustiske lydfeltet rundt danseren: Følgerbier plasserer nemlig sine antenner i sonen med maksimal akustisk kortslutning der luftpartikkelbevegelsene er mest intense. Disse observasjonene kan bety 1) at følgerbier forsøker å unngå å blande budskapene som kommer med lydbølger fra andre dansebier i nærheten og 2) sier noe om hvordan følgebiene kan innhente navigasjonsinformasjon fra det akustiske feltet som danseren skaper nærmest bikroppen.

En rekke fenomener ble oppdaget på et så komplisert lydteknisk nivå at vi ikke skal komme inn på det her. Informasjonen finnes i referansene nederst.

Lite lyd ble registrert rundt danserens hode, og danserens vaggebevegelse skapte i seg selv 12-13 Herz målt med en stasjonær måler, og denne vaggelyden i seg selv er en del av hele dansebudskapet.

Som vi har sett bruker trekkbiene en vaggende dans for å informere andre trekkbier om retningen og avstanden til steder med nektar eller pollen. Lyd og strømmer av luft som dannes av danserens vinger i tillegg til vibrasjoner dannet av musklene inne i framkroppen (Thorax), er tydelige tegn som bidrar til at budskapet blir oppfattet og forstått. Hvordan biene tolker budskapet og omdanner det til handling i form av søk i terrenget, er det manglende forståelse av.

LYD OG VIBRASJONER TOLKES I HJERNEN. For å forstå hvilke nerveoverføringer som er inne i bildet ved bienes dansekommunikasjon, ble anatomien i antennene og selve Johnston-organet analysert (Tsujiuchi et al. 2007). Man så på de delene av antenna som fungerer som mottakere av signaler og deres evne til å omdanne de til nervesignaler for transport til hjernen. Bienes Johnston-organ består av 300-320 scolopia, som er sammensatte nerveceller med forbindelse til ca 48 hud-dekte «knapper» plassert rundt hele overflaten av antenneleddet Pedicel (se bildet). Hver av de 48 scolopia inneholder følsomme nerveceller. Den ytterste delen av antenna, flagellum, som biene bruker i direkte kontakt på dansebias kropp og i det nærmeste feltet rundt den, er spesielt følsom for lavfrekvens lyd og har forbindelse med Johnston-organet. Lyd i området 265-350 Herz, oppfattes ikke av flagellum. Likevel mener forskerne at biene som følger dansebia kan oppfatte både de lavfrekvense lydene på 12-15 Herz og de korte vibrerende pulsene dansebia lager med vingene der det dannes både luftstrømmer og lyd med høyere frekvens. Vingene lager en luftstrøm med styrke 1m/sek i pulser med varighet 20 millisekunder og med frekvens 200 til 300 Herz. Impulsene som fanges opp av Johnston-organet, sendes videre til hjernen for tolkning.

VIBRASJONER EN DEL AV SPRÅKET. Arbeiderbiene kommuniserer også ved hjelp av vibrasjoner i underlaget som vanligvis er voksbygg. Disse vibrasjonene oppfattes av vibrasjonsfølsomme organer i beina (fig.1B i tegningen over). Prøv å legge øret inntil kuben og knips i kubeveggen. Du lager en vibrasjon i kubens materiale som oppfanges av bienes føtter. Så hører du reaksjonen, er biene i live – de bruser. Vibrasjonene blir tolket og omdannet til nerveimpulser og overført til nervesystemet (Hunt og Richard 2013).

Når dansebia signaliserer både ved hjelp av vingene, vaggende kroppsbevegelser og kraftige muskelbevegelser i framkroppen (thorax), overføres sterke vibrasjoner fra framkroppen via beina og ned i vokstavlene. Disse vibrasjonene er sterkest når vrir framkroppen kraftig sideveis i en bue i forhold til bakkroppen (Hunt og Richard 2013). Det er påvist både loddrette og vannrette vibrasjoner i vokstavlene alt etter beinstillingen på de dansende biene (Sandeman et al., 1996, Rohrseitz og Kilpinen 1997).

Dansende bier er vanligst på vokstavler med helt utbygde celler, i forhold til avkortede eller ikke utbygde celler. Dans på utbygde tavler med åpne celler tiltrekker seg raskt trekkbier som er arbeidsløse, noe som kan tyde på at strukturen og tettheten i tavlebygget har sammenheng med signaloverføringen (Tautz 1996). Selv om vibrasjoner i vokstavlene under dansen overfører informasjon fra danseren til biene som observerer, kan ikke vibrasjonene i vokstavla gi nøyaktig informasjon om hvordan danseren beveger seg, slik som vinkler, retning eller hastighet (Nieh og Tautz 2000) og blir derfor bare et supplement til selve dansen.

Av andre dyr som kan kommunisere ved hjelp av lavfrekvent lyd i området 15 til 35Hz, er elefanten et godt eksempel. Den sender lydbølger ned i bakken i alle retninger som andre elefanter fanger opp flere kilometer unna.

ET SAMMENSATT DANSESPRÅK. Dansespråket biene bruker består da av både selve 8-tall dansen med sine karakteristiske vaggebevegelser, lavfrekvent lyd fra 12 til 15 Herz, hurtige og korte vingebevegelser som varer noen millisekunder, luftstrømmer med fart 1 meter pr. sekund, vibrasjoner i selve bikroppen, lydbølger i frekvensområdet 200 til 350 Herz og sterke vibrasjoner som overføres til vokstavlene ved hjelp av beina. Alt dette skjer på en gang. Ikke rart at biene samler seg rundt den som har noe å fortelle.

Se denne videoen og hør lydsignalene som bia avgir mens den overlater lasten av nektar til ei husbie. Selv ved lossing, kan den signalisere avstander uten å danse.

DRONNINGENE SIGNALISERER MED LYD. De mest kjente lydene for birøktere bortsett fra bier i flukt, er kanskje tutingen og kvekkingen som dronningene lager i forbindelse med sverming. Disse signalene er også sterke vibrasjonssignaler i vokstavlene i tillegg til de lydene som kan høres flere meter fra kuben. Arbeiderbiene har også et stopp-signal som er kjent (Nieh 1993). Alle disse signalene ligger i frekvensområdet 200-500Herz (Michelsen et al. 1986ab).

Video: Krøpet dronning tuter til innesperrede dronninger. Se på slutten hvordan arbeiderne signaliserer med vibrasjoner gjennom veggen inn til ei innesperret dronning:

Video: Hør arbeiderbier signalisere til hverandre:

KOMMENTAR: Internasjonale forskningsrapporter om bier oversatt til norsk, er det lite av. Kanskje kommer det av at mye at det som det forskes på er krevende stoff for oversetteren som vanligvis ikke er inne i faget.

Stykket ovenfor er hentet fra forskjellig stoff og egne kommentarer. Noe av stoffet har vært så komplisert å oversette (masse vitenskapelige faguttrykk bl.a. innen lydteknikk, biers anatomi og oppbygging av nerveceller) at forenklinger har vært nødvendig. Håper likevel artikkelen kan vise hvor fantastiske biene er. Selv om vi skriver 2018 og bier er den art på jorda det er forsket mest på bortsett fra menneske, så har vi fortsatt mye igjen før vi har full oversikt over dette insektet. Kanskje får vi aldri full oversikt, og det er trolig det beste.

Artikkelen er sakset fra Facebooksiden Norsk Hobbybirøkt . Gå inn og bli medlem!

Kilder:

https://snl.no/lyd

https://www.beeculture.com/a-closer-look-sound-generation-and-hearing/

https://en.wikipedia.org/wiki/Seismic_communicatio...

Vis flere poster...

Kategorier:
Stacks Image 188243
Stacks Image 188246
Stacks Image 188251
Stacks Image 188254
Stacks Image 188259
Stacks Image 188262

Alle rettigheter reservert © NorskBirøkt.no

Utviklet av sirBull.com